Where Plastic Pollution Goes When It Enters The Ocean

Where Plastic Pollution Goes When It Enters The Ocean
Brian Yurasits/Unsplash, CC BY-SA

Of the hundreds of millions of tonnes of plastic waste we produce each year, it’s estimated that around ten million tonnes enters the ocean. Roughly half of the plastics produced are less dense than water, and so they float. But scientists estimate that there are only about 0.3 million tonnes of plastic floating at the ocean surface, so where is the rest of it going?

Consider the journey of a plastic fibre that’s shed from your fleece. A heavy rain washes it into a storm drain or a nearby river. Does the tiny fibre settle there? Or does the river carry it out to the coast where it lingers on the seabed? Or does it continue to float further out – finally ending up in the vast open ocean?


 Get The Latest By Email

Weekly Magazine Daily Inspiration

The dizzying variety of forms plastic waste can take means that a fibre’s fate is just one mystery among countless others.

Finding out where all the missing plastic ends up can help us figure out which parts of the ocean are most affected by this type of pollution – and where to focus clean-up efforts. But to do that, we need to be able to predict the pathways of different kinds of plastic, which requires large teams of physicists, biologists and mathematicians working together.

That’s what our research team is doing. Here’s what we’ve learned so far.

Plastic pathways

We already know that large pieces of plastic, like bottles, can float on the sea surface for years, if not centuries, taking a long time to break down. Currents, winds and waves can, after a journey of several years, bring them to the centre of ocean basins, where they accumulate in 1,000km-wide circulating systems known as gyres. The vast “garbage patches” that result resemble more of a soup of plastic than an island of trash.

But the fate of plastic fibres – perhaps the smallest plastic fragments to reach the ocean – is more complex. Large fibres can break up over days and weeks into even smaller pieces, due to turbulence from breaking waves and ultraviolet radiation from the sun. These are called microplastics, and they range in size from five millimetres to specks smaller than bacteria.

Microplastics can be eaten by fish – it’s estimated that one in three fish eaten by humans contains microplastics. Tinier particles can also be consumed by zooplankton – microscopic animals that float at the surface – which are then eaten by even larger animals, including whales.

Microorganisms can grow on the surface of microplastics too, in a process known as “biofouling” that causes them to sink. Muddy rivers, like the Mississippi or the Amazon, contain clays that settle rapidly when they come into contact with salty ocean water. Microplastics can be carried down by the settling clay, but how much this happens exactly is unknown.

Quantifying all these outcomes for each bit of plastic is an enormous challenge. What fraction ends up in fish, carried down by clay or covered in microbial slime on the sea bed? Of the fraction of plastics which make it all the way out to the open ocean, it’s unclear how long it takes for biofouling or other forces to pull the particles well below the surface to begin their long, final descent to the sea floor.

With all these complicating factors, it may seem hopeless to predict where plastics ultimately end up. But we’re slowly making progress.

Catching a wave

If you have ever been on a boat in choppy waters, you might think you’re just bobbing up and down in the same spot. But you’re actually moving very slowly in the direction of the waves. This is a phenomenon known as the Stokes drift, and it affects floating plastics too.

For particles smaller than 0.1 millimetres, moving through seawater is like us wading through honey. But the viscosity of seawater has less of an influence on plastics larger than one millimetre. Each wave gives these bigger particles an extra push in its direction. According to preliminary research that’s currently under review, this might mean larger plastics are carried out to sea much faster than tiny microplastics, making them less likely to settle in parts of the ocean where more marine life is found – around coasts.

This research involved studying spherical plastic particles, but microplastic waste comes in all kinds of shapes and sizes, including disks, rods and flexible fibres. How do waves influence where they end up?

A recent study found that non-spherical particles align themselves with the direction of waves, which can slow the rate at which they sink. Lab experiments have further shown how the shape of each plastic particle affects how far it’s transported. Less spherical particles are more likely to go further from coasts.

Solving the mystery of the missing plastics is a science in its infancy. The ability of waves to transport large microplastics faster than previously thought helps us understand why they are now found throughout the world’s oceans, including in the Arctic and around Antarctica. But finding the fibre that was pulled from your fleece is still more challenging than finding a needle in a haystack.

About The Authors

Bruce Sutherland, Professor of Physics, University of Alberta; Michelle DiBenedetto, Assistant Professor of Mechanical Engineering, University of Washington, and Ton van den Bremer, Associate Professor of Engineering, Delft University of Technology

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Related Books

The Human Swarm: How Our Societies Arise, Thrive, and Fall

by Mark W. Moffett
0465055680If a chimpanzee ventures into the territory of a different group, it will almost certainly be killed. But a New Yorker can fly to Los Angeles--or Borneo--with very little fear. Psychologists have done little to explain this: for years, they have held that our biology puts a hard upper limit--about 150 people--on the size of our social groups. But human societies are in fact vastly larger. How do we manage--by and large--to get along with each other? In this paradigm-shattering book, biologist Mark W. Moffett draws on findings in psychology, sociology and anthropology to explain the social adaptations that bind societies. He explores how the tension between identity and anonymity defines how societies develop, function, and fail. Surpassing Guns, Germs, and Steel and Sapiens, The Human Swarm reveals how mankind created sprawling civilizations of unrivaled complexity--and what it will take to sustain them.   Available On Amazon

Environment: The Science Behind the Stories

by Jay H. Withgott, Matthew Laposata
0134204883Environment: The Science behind the Stories is a best seller for the introductory environmental science course known for its student-friendly narrative style, its integration of real stories and case studies, and its presentation of the latest science and research. The 6th Edition features new opportunities to help students see connections between integrated case studies and the science in each chapter, and provides them with opportunities to apply the scientific process to environmental concerns. Available On Amazon

Feasible Planet: A guide to more sustainable living

by Ken Kroes
0995847045Are you concerned about the state of our planet and hope that governments and corporations will find a sustainable way for us to live? If you do not think about it too hard, that may work, but will it? Left on their own, with drivers of popularity and profits, I am not too convinced that it will. The missing part of this equation is you and me. Individuals who believe that corporations and governments can do better. Individuals who believe that through action, we can buy a bit more time to develop and implement solutions to our critical issues. Available On Amazon

From The Publisher:
Purchases on Amazon go to defray the cost of bringing you InnerSelf.com, MightyNatural.com, and ClimateImpactNews.com at no cost and without advertisers that track your browsing habits. Even if you click on a link but don't buy these selected products, anything else you buy in that same visit on Amazon pays us a small commission. There is no additional cost to you, so please contribute to the effort. You can also use this link to use to Amazon at any time so you can help support our efforts.

 

You May Also Like

English French Spanish

follow InnerSelf on

facebook icontwitter iconyoutube iconinstagram iconpintrest iconrss icon

 Get The Latest By Email

Weekly Magazine Daily Inspiration

MOST READ

Making Vaccines More Accessible
by Jill Richardson
As Morrison and Ardern meet, differences of opinion give way to the enduring close relationship
As Morrison and Ardern meet, differences of opinion give way to the enduring close relationship
by Mark Kenny, Professor, Australian Studies Institute, Australian National University
Growing a Just Future in Tulsa
by Breanna Draxler
image
El Salvador's façade of democracy crumbles as president purges his political opponents
by Mneesha Gellman, Associate Professor of Political Science, Emerson College
Demonstrators hold signs reading Tax the Rich
How Everyone Getting More Equal Slices of the Economic Pie Can Curb the 'Velocity of Wealth'
by Common Dreams - Breaking News & Views for the Progressive Community
Police in riot gear and holding batons physically carry a man down the street
Belarus plane hijacking snarls Biden's hopes to repair strained US-Russia relationship
by Tatsiana Kulakevich, Lecturer at SIGS, Research Fellow, Affiliate Faculty at the Institute on Russia, University of South Florida
Protesters gather outside the U.S. State Department to demonstrate against Israel's assault on Gaza
US Unions Are Voicing Unprecedented Support for Palestine
by Common Dreams - Breaking News & Views for the Progressive Community
image
G7 is more united but not effective enough to tackle the world’s biggest problems
by Natasha Lindstaedt, Professor, Department of Government, University of Essex
Paying off a home loan used to be easier than it looked. It's now harder. Here's why
Paying off a home loan used to be easier than it looked. It's now harder. Here's why
by Peter Martin, Visiting Fellow, Crawford School of Public Policy, Australian National University
image
How the pandemic has brought out the worst — and the best — in Australians and their governments
by Frank Bongiorno, Professor of History, ANU College of Arts and Social Sciences, Australian National University

New Attitudes - New Possibilities

InnerSelf.comClimateImpactNews.com | InnerPower.net
MightyNatural.com | WholisticPolitics.com | InnerSelf Market
Copyright ©1985 - 2021 InnerSelf Publications. All Rights Reserved.